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We shall consider the formulation of problems of wave propagation in the 
presence of boundaries on which high-order homogeneous boundary condi- 
tions are satisfied. It will turn out that on contours of discontinuities 
in the coefficients we must give additional conditions, in this paper 

called “contact conditions”. A simple problem will be solved with the 
application of contact conditions - the reflection of a transverse wave 
from the lines of discontinuity of an elastic plate, covering a liquid 
ha1 f-space. 

Recently, some attention has been given to problems of wave propaga- 
tion in the presence of surfaces on which homogeneous boundary conditions 
are given that include derivatives of higher order. Thus, in particular, 
is described the impact of a sound wave on an elastic shell subjected to 
pure bending, or on a thin membrane. Lamb [ 1 I has considered the dif- 
fraction of a wave by a semi-infinite plate. 

Also interesting is the case when the coefficients of the homogeneous 
boundary condition are piecewise constant, corresponding, for exaiple. 
to a shell composed of several homogeneous pieces. These problems possess 

some specific features, and questions of their being properly posed are 
answered by the uniqueness theorem, given below. 

Let a uniform liquid (with density a and sound speed C) occupy some 
volume V, bounded by a surface S (which, for example, may be considered 
to belong to the class BH in the sense of Liapunov); parts of S, in 
general, may extend to infinity. Let a sound field (with velocity poten- 
tial 4, pressure p, velocity v) satisfy the following: 

1) In the volume V, the wave equation holds: 
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where f(r, t) is the source function, differing from zero only in the 
finite part of V. 

2) Zero initial condition holds: 

v  = grad cp = 0 for 1 = 0 P) 

3) The following boundary condition holds on the finite part of sur- 
face S ( which is considered as partitioned into several Pieces Sk): 

Here the parameters Dk, ak, pk and pk are constant and positive on 
each Sk, and u is a function of time and of the points on the surface; 
eliminating it from (3), we may obtain the homogeneous boundary condi- 
tion in the following form: 

Here II is the outward normal unit vector, and vk designate differ- 
ential operators in coordinates normal to n. 

4) On the contours of discontinuity Of parameters Lk some set Of 

linear conditions holds, insuring the continuity of the normal components 
of the following vector I (which is defined on the surface S): 

(This condition will be called contact condition in what follows). For 
conditions (1) to (5) the solution to the posed boundary-value problem 
in linear acoustics will be unique (if one excludes from consideration 
the uninteresting class of functions which differ from zero on a set of 
measure zero). 

Before proving the statement we make some observations on some of the 
previous conditions. Equation (3) has a simple meaning, relating force 
to displacement, if we identify u as the normal displacement of the shell 
from equilibrium position, Dkv 4 2 u as the force due to bending, and akV u 
as the force of the membrane type, characteristic of capillary phenomena. 
The term pka is interpreted as the quasi-elastic force, ,hk the mass per 
unit area of the shell, and pka2u/df2 the corresponding inertia force. 
The positive sign of the constants Dk, ak, pk and pk corresponds to the 
stability condition for the boundary: the forces resulting from its de- 
formation tend to restore it to equilibrium position (a = 0). 

The contact condition also admits a simple interpretation. The vector 
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I is the energy-flow density vector for the shell considered; the first 
term in (5) is connected with the transfer of elastic energy for bending 
vibrations (as was shown in our paper [ 2 I), and the second with the 
energy transferred along the membrane. Higher-order boundary conditions 
correspond to (physically) rather complicated surfaces, which appear 
able to transmit energy independently; from this point of view, contact 
conditions are completely legitimate. 

To prove the uniqueness theorem, we shall construct the difference of 
two possible solutions (p = p1 - p2, v = v1 - v2, @ = & - &I. The 
following energy theorem is valid [ 3 1 t 

where the second integral extends only to a finite part of the surface S 
(since we are considering the unsteady problem). Using boundary condition 
(3), and carrying out the obvious integration by parts, we may write for 
some part of the surface Sk 

,I 
\ pv, dS = D, (Vu)” + 3~~ (Vu)’ + Pk u2 -I- p,< (115 (7) . 
% Lk 

Here I, is the component of vector I normal to the boundary I&, I be- 
ing determined in (5); t is the outward normal. 

Into Formula (6) enters the sum over all regions Sk; thus the integral 
for each contour L& appears twice, with opposite signs of the unit normal 
vector. The contact conditions are assumed linear, and thus I, is con- 
tinuous across a non-uniform field, so that 

and the energy theorem takes the form 

By virtue of the zero initial conditions for each section and the non- 
negativeness of the Coefficients (D&, a&, fi&, p&), it fOllOWS from (8) 
that the difference of the solutions is identically zero. 

Thus, we have proved the uniqueness theorem for the problem with 
initial data, and shown the necessity to take into account contact con- 
ditions. Evidently, they are also needed in more general cases. To 
formulate the theorem for stationary problems, we replace condition (2) 
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by the radiation principle (in appropriate form). If the region V con- 
tains points, where the solution may lose analyticity (edge of a wedge 
or, in our case, the boundary of the contact surface). then it is neces- 
sary to impose conditions of weak singularities for the field, i.e. con- 
tinuity of the potential +. These variations of the uniqueness theorem 
have been discussed (cf., for example, [ 4 I). 

We now consider a simplest boundary-contact problem. 

Let the half-space y < 0 be filled with an incompressible fluid of 
density (I, covered with a thin plate of constant rigidity D, the mass of 
which is negligible (Fig. 1). On the line (X = 0. y = 0) the contact con- 
dition is disturbed. For instance, both edges of the half-plates may be 
free, or may be hinged together; the presence of welding would correspond 
to the trivial case of an infinite homogeneous plate. If a surface-bend- 
ing wave hits this contact line, it Is interesting to determine the 
strength of the reflected wave, since this problem is connected with the 
reflection of bending waves from cracks in ice sheets; the hinged-joint 
case may give some representation on the reflection of bending waves from 
overlapping ice-sheets. As follows from [ 2 1 J there exists a range of 

frequencies for this the proposed 
model is acceptable. 

The proposed problem will now be 
reduced to the uniqueness theorem. 
The velocity potential in the fluid 
satisfies the Laplace equation 

AT=0 (9) 
Fig. 1. 

and,considering a single frequency, 
we have for everywhere on the plate (except the contact line) the bound- 
ary condition (4) 

(IO) 

Here the operator V acts only along coordinates L and Z, and q desig- 
nates the wave number for the bending wave on the uniform plate. 

The contact conditions on the crack, by virtue of the arbitrariness 
of the displacement u and the slope au/d% of the edges of the half-plate, 
are given in the form 

limPu=O for z-P+O, lim a~‘24 -=0 for z-+*0 dx 

These conditions coincide with the well-known “free-edge” conditions 
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in the theory of plates. We observe that in the case of the hinged joint 
(displacement continuous but slopes arbitrary) the contact conditions 
are formulated somewhat differently: 

lim V2u=0, lim u = lim u 
X-+3$0 x-+0 x+-o .- 

hlo T = lim a= (12) 
.X+-O 

Condition (ll), because of the second h 
equation of (3), is easily transformed into 0 r 
a condition on the velocity potential $. 

-A, 

-Ii+= 

-1qsLne 
The requirement of weak singularities 

(absence of sources) indicates the contin- *-A I ‘% 
uity of the potential on the line (x = 0, 
y= 0). 

Fig. 2. 
The radiation principle is easily applied 

in the following manner. We exclude from the 
full field 4 a wave striking against and 
bending the plane 

‘po = AeiQ L- I 00s O+z sin O)-171~ (13) 

where 8 is the incidence angle of the wave on the line of contact; then 
the secondary field & = 45 - &, arising on account of the fracture, will 
be an outgoing wave as 1 x 1 + 00 and will vanish for y + m. 

We shall seek the “secondary” field & in the form a’(~, y) exp iq 

sin 8z where @(I, y) is represented by the following contour integral: 

Q (2, y) = & \ j (h) exp [ihz - l/h2 + q2 sirI2 Oy] dh 
b 

(14) 

Here f(x) is a function to be determined; contour r is selected in 
the X-plane, as shown in Fig. 2, and the branch of the root is fixed so 
that on our sheet of the Riemann surface, Re 4 (At + q2sin28) 3 0; this 
corresponds to the requirement for a vanishing field for y -) -. 

The continuity of the potential will be guaranteed if we assume that 
f(h) vanishes at infinity faster than 1 x I- ‘. Accepting that (justifica- 
tion to follow), it is easily verified that, for x > 0, the integral in 
(14) may be reduced to an integral on the contour r+, enclosing all the 
singularities of the integrand lying above the contour r (in the upper 
half-plane of A), and for I < 0, the initial contour r is transformed 
into the contour r-, enclosing all singularities located below r. The 
integrals on the contours r+ and r- (as will be evident in what follows) 
admit at least five derivatives in the coordinates z and y. Taking this 
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into account, one readily sees that boundary condition (lo), imposed on 
the secondary field, reduces to the following relation for the unknown 
function f(A) : 

Here 

1 - 
2ni s 

f(h)([h2+ q’sin2f)]“z-9(I”)e ihx d), = 0 (15) 
ri 

r+ is for x>o, 1‘- for s<O 

By virtue of the arbitrary nature of x, (15) will hold if the function 

F (h) = f (h) [(A2 + q2 sin2 o)“‘-- q’] 

possesses no singularities in the entire complex plane, except at in- 
finity, where it may have a pole of finite order, i.e. if F(X) is some 

polynomial in A. The requirement of the continuity of the potential on 
the line of contact in the crack problem implies that F(A) contains no 
terms higher than the third power, then f(X) * l/x as x + 00 and integral t 

(14) is continuous. We observe that in the hinged-joint problem the con- 
dition of continuity of displacement, i.e. a+/ay. demands that F(X) be 
a second-order polynomial. And so. if 

f (A) = 
cg + Cl?. + c&2 + C&3 

1/(q2 sin2 6 + h2)5 - q5 
(1’5) 

then boundary condition (10) obtains. The explicit form of f(x) indi- 
cates that the integrand in (14) has singularities in the form of branch 
points and poles; on our sheet of the Riemann surface there are six poles, 
whose positions are shown schematically in Fig. 2. It is also evident 
that the choice of the contour r corresponds to the radiation principle. 

It remains to impose the contact conditions on the full field; for 
the case of the crack problem there are eight such conditions - accord- 
ing to the number of undetermined real constants in (16). Evidently, by 
virtue of the linearity of relation (11). to determine Ck = Ok + ibk. 

one will obtain a system of eight linear nonhomogeneous algebraic equa- 
tions, proportional to the amplitude of the incident wave A. The coeffi- 
cients of the system are determined from the residues of the poles of 
f(x) and the integrals along the boundaries of the discontinuities. Con- 
sidering ck to be known in principle, it is easy to investigate the ob- 
tained solution. Thus the secondary wave consists of an undamped bending 
wave emanating from the crack (described by the residues of the points 
f Ah), a non-uniform bending wave whose amplitude decreases exponentially 
with increased 1 x 1 ( described by the residues of the points f xl and 
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f Ai), and a three-dimensional disturbance going downward into the fluid 
whose amplitude decreases as some inverse power of distance. l This dis- 
turbance is described by the integral along the boundaries of the dis- 
continuity. 

Particularly simple is the case of the normal-incidence (8 = 0) bend- 
ing wave on the crack; here the computation can be carried to the end 
without using numerical analysis. The positions of the poles for 8 = 0 
are evidently 

ho = q, h, = q exp$ h2 = q exp 9 

We write one of the contact conditions (11) explicitly: 
(17) 

Relima3’P 
ax2 ay 

im 

s 
ks F (h) 

AlO - qlo 
dS + Aq3 = 0 

0 

The real part of the integral in (17) is easily computed with the help 
of the following device: 

icu 
Ck ?bk+s 

ice 

ReIk= ReL 
s 

dh = Re QjPk eiEh 

s 

kk+3 d?w 

ni ~'0 - qlo ni AlO ;q’o 
0 0 

where the real quantities pk and fik have the following condition imposed 
on them: 

pk cos Eh = ah (k even) , ph sin ek = b, (k odd) 

If now CA is fixed such that 

Ek + (4 + k) 2” = + 
5 

then evidently 

Re -$- eiCk up 
s 
0' 

The last integral is taken along the ray arg x = 2t7/5, on which lies 
the pole A, of the integrand; thus to deform the initial integration 
path to the chosen one. we must add (with minus sign) the half-residue 
at XI. As a result, we obtain 

l In the case of the normal-incidence wave, the decrease is as rB3. 
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(k even) , Re I, =- b, qk-’ (k odd) 
10 sin .ek 

The remaining contact conditions are very similar to (17); this not 
only permits analogous methods to be applied for the determination of 
coefficients, but also the simplification of the system of equations with 
the help of a series of identity transformations. Its solution has the 
form. 

co = c* = 0, C.J = (-1.8 + i2.4) Aq2, cs = (-4.5 - i1.5) A9” (18) 

For the case of the hinge-joint we similarly obtain 

co = Cl = 0, cz = (-1.8 $ i2.4) Aq? (19) 

From (18) and (19) we may deduce the following values for the coeffi- 
cients of the reflected wave V and the passed wave W for normal incidence 
V = 0.95 and W = 0.32 for the case of a crack; V = 0.6 and W = 0.8 for 
the case of a hinged joint. For an oblique-incidence wave the reflection 
must increase, and the order of the effect is clear from the conclusions 
presented above. We observe that the wave reflected from the crack is 
strong - only 10 per cent of the energy of the wave passes through. This 
fact, that the quantities V and W turn out to be frequency-independent, 
corresponds to the existence of only one parameter q in the problem. 
Under actual conditions for sufficiently low frequencies, bending waves 
on the surface of a frozen sea transform into gravity bending waves and 
pure gravity waves. The conclusion that the reflection coefficient is 
constant in this frequency range, naturally, is inapplicable. 

In conclusion, we may indicate that by similar means we can obtain 
the solution for the reflection of wave fronts on a discontinuity line 
for a membrane. In this case V = 4 3/2, and W = l/2. 

BIBLIOGRAPHY 

1. Lamb, H., Diffraction of a plane sound wave by a semi-infinite thin 
elastic plate. Journ. Acoust. Sot. Amer. Vol. 31, NO. 7, 1959. 

2. Krasil’ nikov, V. N., Vliyanie tonkogo uprugogo sloia na rasprostrane- 
nie zvuka v zhidkom poluprostranstve (Influence of a thin elastic 
cover on sound propagation in a liquid semi-space). Akusticheskii 

Zh. Vol. 6, 1960. 

3. Kuznetsov, D. S., Gidrodinarika (lfydrodynanics). Gidrometizdat, Lenin- 
grad, 1951. 

4. Stoker, J. J., Water Waves. Interscience, 1957. 

Trans 1 a ted by C. K. C. 


